Neuropeptides amplify and focus the monoaminergic inhibition of nociception in Caenorhabditis elegans.
نویسندگان
چکیده
Monoamines and neuropeptides interact to modulate most behaviors. To better understand these interactions, we have defined the roles of tyramine (TA), octopamine, and neuropeptides in the inhibition of aversive behavior in Caenorhabditis elegans. TA abolishes the serotonergic sensitization of aversive behavior mediated by the two nociceptive ASH sensory neurons and requires the expression of the adrenergic-like, Gαq-coupled, TA receptor TYRA-3 on inhibitory monoaminergic and peptidergic neurons. For example, TA inhibition requires Gαq and Gαs signaling in the peptidergic ASI sensory neurons, with an array of ASI neuropeptides activating neuropeptide receptors on additional neurons involved in locomotory decision-making. The ASI neuropeptides required for tyraminergic inhibition are distinct from those required for octopaminergic inhibition, suggesting that individual monoamines stimulate the release of different subsets of ASI neuropeptides. Together, these results demonstrate that a complex humoral mix of monoamines is focused by more local, synaptic, neuropeptide release to modulate nociception and highlight the similarities between the tyraminergic/octopaminergic inhibition of nociception in C. elegans and the noradrenergic inhibition of nociception in mammals that also involves inhibitory peptidergic signaling.
منابع مشابه
Monoamines and neuropeptides interact to inhibit aversive behaviour in Caenorhabditis elegans.
Pain modulation is complex, but noradrenergic signalling promotes anti-nociception, with α(2)-adrenergic agonists used clinically. To better understand the noradrenergic/peptidergic modulation of nociception, we examined the octopaminergic inhibition of aversive behaviour initiated by the Caenorhabditis elegans nociceptive ASH sensory neurons. Octopamine (OA), the invertebrate counterpart of no...
متن کاملThe interaction of octopamine and neuropeptides to slow aversive responses in C. elegans mimics the modulation of chronic pain in mammals
Octopamine (OA) appears to function as the invertebrate counterpart of norepinephrine (NE) in the modulation of a number of key behaviors. In C. elegans, OA signaling is complex, mediated by at least three distinct α-adrenergic-like receptors and appears to activate more global peptidergic signaling cascades that have the potential to dramatically amplify the octopaminergic signal. These OA-dep...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملHeat avoidance is regulated by transient receptor potential (TRP) channels and a neuropeptide signaling pathway in Caenorhabditis elegans.
The ability to avoid noxious extremes of hot and cold is critical for survival and depends on thermal nociception. The TRPV subset of transient receptor potential (TRP) channels is heat activated and proposed to be responsible for heat detection in vertebrates and fruit flies. To gain insight into the genetic and neural basis of thermal nociception, we developed assays that quantify noxious hea...
متن کاملTocotrienol Modulates the Expression of Proteins in Oxidative Stress-Induced Caenorhabditis Elegans
Objective: Oxidative stress that damages proteins result in aging and age related diseases. The aim of this study is to determine the effect of tocotrienol rich fraction (TRF) on the expression of proteins in oxidative stress-induced caenohabditis elegans (C.elegans) which has homologous genes to humans. Methods: The worms were treated with TRF prior to, after and continuously in separate group...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 33 35 شماره
صفحات -
تاریخ انتشار 2013